Configurable Microfactories: Autodesk’s San Francisco Technology Center

There are only a handful of Autodesk Technology Centers around the world—in the United Kingdom (Birmingham), Canada (Toronto), and the United States (Boston and San Francisco). Each location explores different aspects of the future of making, from construction to advanced manufacturing to artificial intelligence and generative design. And all of the spaces are designed to foster innovation and advance Autodesk’s vision is to help people imagine, design, and make a better world.

Autodesk’s San Francisco location, at Pier 9, serves as a hub for the exploration of the future of manufacturing. Its focus is “configurable microfactories,” also known as iterative manufacturing, and offers a range of advanced manufacturing equipment, robotics, general shop facilities, and workspace to research and develop ideas that push the boundaries of the built environment.

On April 25, the Autodesk Foundation invited Blum Center-affiliated graduate students to meet with Autodesk experts on the future of sustainable design. Fifteen Development Engineering students, InFEWS Fellows, and Big Ideas Hardware for Good participants explored ways to apply their technical skills to the future of manufacturing.

Zoé Bezpalko, who heads Autodesk’s sustainability strategy for the design and manufacturing industries, presented several tools, including CNC machines, 3D printers, woodworking tools, and laser cutters. Autodesk develops the software that runs on these tools and is developing and promoting software solutions and workflows that work either in the design phase, or with these hardware tools, in the manufacturing phase, to reduce material and energy consumption. The result is a reduction in the environmental impact of product design and manufacturing industries.

Bezpalko presented a display of 3D printed objects, including a replica of Van Gogh’s Starry Night and facial sculptures made from paper. A few highly intricate coral replicas caught the attention of several students. Bezpalko explained the coral model was an output from Autodesk Foundation grantee The Hydrous, a startup that uses reality capture and photogrammetry to create high resolution 3D models of coral reefs as part of a multi-pronged conservation effort. Given the severe impacts of climate change on marine ecosystem health, the 3D printed coral reefs help The Hydrous raise awareness and provide ways to collect data, analyze, and monitor coral reefs without the risk of exposing them to further damage.

Autodesk’s Zoé Bezpalko displayed a 3D printed object to the Blum Center group.

The Blum Center group also visited the robotics lab where two large robotic arms were building a tower from Legos. The group discussed the future of robotics and the many challenges in teaching a robot to complete simple human tasks. Bezpalko showed the group a photo of a 3D printed bridge in Amsterdam, called MX3D, which will soon be installed at one of the city’s oldest and most famous canals. The 3D printed MX3D bridge is a fully functional stainless steel bridge, completed in just six months through robotic additive manufacturing technology.

Over lunch, the group was joined by two senior staff members from Autodesk. The first was Michael Floyd, Autodesk’s AEC Sustainability Strategy Manager, who incubates and promotes novel and existing solutions, largely for high performance buildings, zero-waste construction, and smart, resilient cities. Floyd explained that to decrease the environmental impacts of construction, Autodesk is supporting integration of BIM 360, Autodesk’s building design & construction platform, with EC3, an embodied carbon calculator for buildings. EC3 provides data about the “cradle-to-gate” embodied carbon of locally available building materials, providing data on greenhouse gas emissions associated with raw material extraction, logistics, and manufacturing of specific in-market materials. Green building practices, now widely adopted across the United States and European Union, are still nascent in many developing countries. Floyd hopes that by helping building professionals make informed decisions to minimize the embodied carbon of their projects, Autodesk can catalyze green building practices in the global North, and in developing countries alike.

Morgan Fabian, who leads machine learning research and development for Fusion 360 at Autodesk, talked to the Blum Center group about generative design and how it relates to sustainability. The recent Cal Industrial Engineering graduate explained how the fusion of machine intelligence and creative work can maximize innovative design and function. For example, Autodesk’s Fusion 360 software has generative design capabilities allowing designers to explores alternative design permutations. By providing designers and engineers with a wider array of options, they can select a final design that reduces environmental impact by filtering for specific constraints including materials, cost, and manufacturing methods.

To demonstrate the impact of generative design, Fabian used the example of WHILL, a client that designs and manufactures electric wheelchairs. According to WHILL’s market research, users wanted lighter wheelchairs that are both more affordable and portable. To meet these standards, WHILL used Fusion 360’s generative design capabilities to output dozens of alternative designs that would meet these demands while maintaining the device’s mechanical integrity. The result exceeded expectations; WHILL was able to lighten the frame by more than 30 percent, making it easier to lift and load the wheelchair into the trunk of a car.

George Moore, a UC Berkeley PhD student in Mechanical and Development Engineering, said that the highlight of the Pier 9 visit was learning about Autodesk software to support collaboration and joint decision-making for sustainable design solutions.

Dr. Yael Perez, a researcher at the Blum Center, noted that there are many students like Moore who collaborate with communities, such as the Pinoleville Pomo Nation in northern California, to develop sustainable designs for housing, energy, and education.

“By making software available to students for free, as well as providing other types of supports, Autodesk is bringing local and professional knowledge to the design table for collaborative innovations,” she said.

—Lisa Bauer

The Future of Collaboration in the Future of Work

By Rachel Dzombak

At the 2018 Autodesk University conference, a weeklong event bringing together representatives from the building, design, manufacturing, and construction industries, the skillsets required for the future workforce were a heavy focus. In her keynote speech, Beth Comstock, the former CEO of GE, discussed how multinational companies are reorganizing around digital information flows, asserting, “We can’t control change, we can’t predict the future, but we can be more adaptable.”

Throughout the conference, others asked: How do we build an adaptable workforce? How are educational needs shifting in response to emergent industry changes? What are the initial steps that we need to take to prepare for the transition?

These critical questions are being asked not just by industry leaders but by faculty and senior administrators at universities. The conversation at UC Berkeley is near constant, especially in engineering and business. Students and faculty alike want to know: How will companies operate? How will industries evolve? And how should socio-political systems best adapt to workforce changes?

There are pessimists and optimists. Among the optimists is UC Berkeley Robotics Professor Ken Goldberg, who argues that forecasts of mass unemployment are unfounded. He believes new jobs will replace old ones and even imagines, echoing Maynard Keynes, that automation will lead to elimination of mundane tasks, giving people time to be more creative.

A technology-infused world that abets humans must be a goal. We may even be on the brink of a golden age of intelligent collaboration—enabling new inventions and ways of thinking that come from the melding of disciplines, cultures, and fields. As Fei-Fei Li, a Stanford University computer science professor and former chief scientist at Google, points out, bringing technology to bear on societal issues will “require insights derived from fields beyond computer science, which means programmers will have to learn to collaborate more often with experts in other domains.” In other words, workers, especially those in the cutting-edge fields, will be compelled to integrate computation with linguistics, behavioral science with physics, economic development with history, and so on.

Historically, universities provided access to knowledge and skillsets that was hard to reach otherwise. Knowledge was held by faculty experts who achieved mastery in narrow subjects, and delivered material to students via lectures. With the rise of the Internet, content is now available at an unprecedented level. Students are learning to prove fluid dynamics proofs through YouTube, skipping economics class in favor of learning through Khan Academy, and asking Google or Wikipedia “How do I design a gray-water system?”

If students are then learning traditional material through other forums, what is the value of the university today? And what do students need to learn that cannot be taught online? The World Economic Forum cites the top six skills needed in 2020 as: 1) complex problem solving, 2) critical thinking, 3) creativity, 4) people management, 5) coordinating with others, and 6) emotional intelligence.

In this first article on the future of work, I want to underscore that three of the top six skills on this list—and many others—focus on collaboration. This is unsurprising, as work increasingly happens in teams regardless of industry. However, few (if any of us) have ever been explicitly taught how to work in teams. We learn through sports and project work, but team-based experiences often lead to frustration (“oh, I’m stuck doing all the work again”), confusion (“we’re all on different pages”), or conflict (“it’s really hard to work with people who are so different from me”).

Teaching students to collaborate across diverse teams will be a key priority of universities in the coming years. Speaking on cultivating the next generation of students, Ruth Simmons, former president of Brown University and current president of Prairie View A&M University, commented in a recent New York Times article about the role of teaching students to collaborate. She said, “If we’re doing what we should be doing, we are acclimating students to an environment in which they have to learn to work with others who are very different from themselves. And that seems to me to be the first requirement of leadership. To actually learn to work with people in a respectful and inclusive way is inordinately important.”

At Berkeley, Professor Sara Beckman and I developed a toolkit called “Teaming by Design” for teaching students how to collaborate in teams. We provide tools and research grounded in human-centered design, organizational behavior, and systems engineering to educate on building self-awareness, working collaboratively with others, and growing capacity to achieve innovative outcomes.

In the toolkit, we outline four phases: Team Formation, Team Launch, Team Check-in, and Team Celebration. Within each phase, we give exercises teams can conduct to improve their dynamics and research to ground the importance of the phase as well as raise consciousness of common issues. We additionally provide guidance on what work should be done in teams. Too often in school, team work is confused with group work. Students quickly divide the work among themselves and meet only to staple the elements together.

A team, by definition, is a collection of people who are committed to a common purpose, whose interdependence requires coordinated effort, and who hold themselves mutually accountable for results. While in some Berkeley classes, teams are comprised of a mix of different students from the same majors (e.g., a mechanical engineer and civil engineer working on the design of a sensor), other teams cross the spectrum—bringing together students from business, art, history, and dance to address, for example, homelessness. Both experiences represent deep learning opportunities for students to become exposed to different ways of thinking and doing.

Our work aims to create change on several levels. First, it is a resource for faculty who may be unfamiliar with how to coach teams. Despite the changes coming to education, faculty (particularly at research universities) are still largely hired for expertise in a narrow field. A fluid dynamics professor who wants students to work in teams within her class may be great at coaching on mathematical modeling issues yet far less equipped at structuring projects that require interdependence or coaching on the socio-emotional challenges that come up within project teams—such as issues of mutual accountability, trust, and conflicts stemming from varied personalities. We work with faculty in business, engineering, art practice, and biology to teach them how to collect feedback and how to debrief the feedback with students, so that it becomes a learning mechanism and not only a tool for grading.

During the Autodesk University conference, advanced machines, XR headsets, and 3D digital models were prominently on display. But even more prominent were the opportunities that technology could enable. For example, advanced lighting systems that provide Internet, mood, music, and safety features—in addition to light—could lead cities to rethink public services. The role of the lighting designer will shift from thinking about delivering light to imagining ways people might navigate their environment. This new frame increases the importance of knowing how to draw out insights from residents and collaborating with relevant stakeholders. Advancing technology forces individuals and organizations to rethink the systems in which they are working, and who they are working with. The more diverse the collaboration, the higher chance for creative problem solving.

We need to start ensuring that students are equipped with the ability to collaborate across untraditional boundaries, because collaboration will be critical for their success in the rapidly evolving workplace.

Rachel Dzombak is a Research Fellow at the Blum Center for Developing Economies. She researches and teaches design, innovation, and system thinking.

Autodesk Foundation CEO Lynelle Cameron on Courage, Creativity, and Critical Thinking

Lynelle Cameron (Haas MBA ’01) has over 20 years of experience helping companies capitalize on market opportunities related to sustainability and climate change. Cameron is currently Vice President of Sustainability at Autodesk and CEO of the Autodesk Foundation. She leads a team transforming the design, manufacturing, and construction industries to capitalize on the business opportunities of a low-carbon economy.

Under her leadership, Autodesk has won numerous awards for sustainability, climate leadership,  and philanthropy. Through the Autodesk Foundation, Cameron has invested over $15 million in entrepreneurs and innovators who are designing a sustainable world for billions of people. Cameron is proving that companies can do well by doing good—in ways that strengthen brand reputation, recruit and retain the next generation of employees, and deliver financial results to shareholders.

She sat down with the Blum Center to talk about sustainability, global challenges, and 21st century skills.

How has your perspective on sustainability evolved during your tenure at Autodesk?

Surprisingly, my perspective on sustainability has remained remarkably consistent over the years. As I wrote in a California Management Review article back in 2001 (vol 43, no. 3 Spring 2001), “Sustainability has become a strategic imperative for all businesses in the 21st century. It has become a fundamental market force affecting long-term financial viability and success.” This is as true today as it was back then.

My understanding, however, of what it would take to get the private sector toshare this view and to embrace the business opportunity that sustainability provides, has definitely evolved. I thought by now sustainability would be regarded in the way quality is—table stakes for every business everywhere. And yet, with each passing year, the stakes become higher and the urgency greater.

When I started leading sustainability teams at HP and later at Autodesk, sustainability was barely viewed as a thought leadership opportunity, much less a business driver. Over the years, this has slowly started to change. Companies like Autodesk are reporting about sustainability and climate change in their 10-Ks, embracing the UN sustainable development goals and setting bold targets, setting up board committees on sustainability, and tying executive compensation to sustainability performance. Employees are voting with their feet—joining companies or leaving them based on sustainability performance. This is all progress worth celebrating. And yet, we are far from where we need to be as a global business community.

What are the skills needed for 21st-century changemakers? How can universities best enable those skills?

In a book called 21 Lessons for the 21st Century, Yuval Harare talks about the four Cs that will be needed to succeed in the age of automation: critical thinking, creativity, communication, and collaboration. As automation technology increasingly handles certain tasks, these distinctly human skills are vital. But there’s a fifth one that needs to be added: courage. Courage to look into the future and be honest about what we are up against. Courage to talk about climate change even when people don’t want to talk about it. Courage to be a leader willing to take risks and listen to crazy or unpopular ideas, wherever they may come from.

I am fortunate to have had mentors, advocates, and allies at every stage of my career propelling me forward and boosting my confidence despite the obstacles in my way. During my time at Haas, I benefited from an environment where ideas are explored and nurtured. As a student, I had a professor who agreed to oversee an independent study to develop a business plan for the Center for Responsible Business, which is celebrating its 15th anniversary this year. To pay it forward, I try to pay extra attention to other nascent ideas, and create conditions for them to take root—just as others did for me.

Universities have a vital role to play in nurturing both people and ideas and equipping the next generation with the adaptability, resilience, and stamina to make the world a better place for billions of people.

At the Blum Center, we have documented that when university-based engineering projects are geared to social impact, more women and underrepresented minorities get involved. Have you seen similar trends at the Autodesk Foundation or elsewhere?

Yes, your findings are consistent with my experience at Autodesk. As an example, the Autodesk Foundation has more than 40 organizations in our portfolio and close to 50 percent of them are led by women or have a woman on the founding team. These leaders bring deep sector knowledge across a broad spectrum of industries—from emerging technologies like AI and robotics, to the architecture, construction, and manufacturing fields.

Similarly, we offer an internship program that matches students who have design and engineering expertise with impact-driven organizations in our portfolio. In our most recent cohort of interns, more than 80 percent were women or minorities. Women seem to be drawn to deliver positive impact to the world and pursue careers that allow them to do so.

In contrast, only 9 percent of the construction workforce is female, and a recent study of the top 100 architecture firms showed that only three were led by women. As more companies recognize the opportunity to align their business with solving important global challenges, I believe women will be drawn to the field and recognize engineering and related industries as wildly impactful career paths.

What are some of the most impressive impact design projects you’ve seen in recent years?

This is always a tough question because these days there are many people using their talents and skills to create positive impact. The first that comes to mind is WeRobotics. They’re using robots and drones to deliver snake anti-venom to remote villages or to drop sterile mosquito nets in the rainforest to fight Zika. They also train students on robotics and are inspiring young leaders to solve important problems while giving them employable skills.

Build Change is another one. They are adopting the latest technologies to design and build disaster-resistant homes and schools. Not only are they rebuilding after disasters like the 2015 earthquake in Nepal, but they are also working quickly to prevent future disasters by working with local communities to improve building codes in disaster prone regions of the world. Their teams of designers and architects are using VR and automation to dramatically speed up their ability to retrofit homes and help communities prepare for when disaster strikes.

Every organization in our investment portfolio from Village Capital to Kenya Climate Innovation Center is creating positive impact; I invite you to learn more about them at www.autodesk.org.

For students interested in infrastructure, architectural, and engineering software and the built planet what are the bright spots of the future? What do they have to look forward to?

Despite the global challenges we face, and the increasing urgency of these challenges, I remain an optimist. I am confident that as humans we can and will solve today’s challenges, although it will take a radically different approach than what we’ve used to date. When we look out into the future, we see that in 2050 there will be 10 billion people on Earth, with most living in cities and more than half enjoying middle-class lifestyles. It will require twice as much energy to power these lifestyles. While this is daunting, it is also the most important design challenge of our time.

And the good news is that I believe we have the technology today—with ever-increasing levels of automation and machine intelligence, to provide humans with the knowledge to design and make more things for more people. With sophisticated automation technology, we can now handle complex systems to design and make everything better and with a lot less negative impact on the planet. With computers now as our design partners, we have collaborative intelligence that will be necessary to change the trajectory we are on.

But it will take a new mindset—one overflowing with courage, creativity, and critical thinking to leverage automation technology in a way that ensures we design a better future for billions of people.

-Tamara Straus

Scroll to top

Host and Fellow Responsibilities

Host Organizations

  • Identify staff supervisor to manage I&E Climate Action Fellow
  • Submit fellowship description and tasks
  • Engage in the matching process
  • Mentor and advise students
  • Communicate with Berkeley program director and give feedback on the program.

Berkeley Program Director​

  • Communicate with host organizations, students, and other university departments to ensure smooth program operations

Student Fellows

  • Complete application and cohort activities
  • Communicate with staff and host organizations
  • Successfully complete assignments from host organization during summer practicum
  • Summarize and report summer experience activities post-fellowship